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The �1+1�-dimensional and �2+1�-dimensional amplified nonlinear Schrödinger equations incorporating
diffraction, Kerr nonlinearity, and gain are solved analytically and numerically. An asymptotic solution is found
corresponding to self-similar propagation of a beam with parabolic amplitude and phase profiles. While the
�1+1�-dimensional solution is directly analogous to parabolic pulse propagation in nonlinear dispersive media,
the existence of self-similar propagation in �2+1� dimensions is a nontrivial question, given that spatial
solitons are unstable in bulk media with nonsaturating nonlinearities. We show that self-similar parabolic
beams are possible in such media with gain and a negative nonlinear index.
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The self-similar evolution of parabolic pulses in nonlinear
dispersive amplifying media has recently attracted much in-
terest �1–3�. The interplay of normal dispersion, self-phase-
modulation �SPM�, and gain leads to an amplified, linearly
chirped pulse with a parabolic temporal profile which is the
asymptotic solution of the amplified nonlinear Schrodinger
equation �NLSE� �4,5�. The process resembles the well
known chirped pulse amplification �CPA� technique, except
that the stretching and amplification of the pulse take place
simultaneously and automatically for parabolic chirped pulse
amplification �PCPA�. PCPA has attracted theoretical atten-
tion not only because of the existence of an analytical
asymptotic solution with elegant self-similarity, but also be-
cause it is a useful approach to obtaining high energy and
high power pulses from fiber amplifiers �2,3�. Recently, this
concept has been extended to fiber lasers �6� and solid state
oscillators �7�. Numerical simulations and experiments have
demonstrated that stable self-similar parabolic pulse trains
can exist in a laser cavity. Due to the linear chirp of the
self-similar pulse �also known as a similariton� the output
pulse energies can be increased by at least an order of mag-
nitude. It should be noted that PCPA relies on the combina-
tion of either normal dispersion and positive nonlinearity
�i.e., SPM� or anomalous dispersion and negative nonlinear-
ity.

To date, all the work on parabolic propagation has fo-
cused on temporal pulse evolution: the temporal evolution
shaped by dispersion and nonlinearity. On the other hand it is
well known that diffraction of paraxial optical beams is
analogous to dispersive propagation of quasimonochromatic
pulses in dielectric media �8�. Both processes are described
by equations that are nearly identical in form. Given the
space-time duality, a question that naturally arises is this:
does there exist a self-similar spatial parabolic beam, i.e., a
spatial analog to the temporal parabolic pulse? Although dif-
fraction and dispersion are analogous in the two propagation
problems, there are differences that make the question inter-
esting. Dispersion is dependent on the waveguide structure
as well as the material itself. It can be engineered to provide
normal or anomalous dispersion that correspond to positive
group velocity dispersion �GVD� or negative GVD, respec-
tively. Since it stretches a temporal pulse, dispersion is a

one-dimensional effect. Therefore PCPA is modeled by a
�1+1� dimensional amplified NLSE. In contrast, diffraction
is primarily a geometrical effect and its fixed sign makes it
always equivalent to anomalous dispersion. Since it happens
in space, diffraction of a beam can be either one dimensional
for the propagation in a planar waveguide, or two dimen-
sional in a bulk medium, in which case the propagation prob-
lem corresponds to a �2+1�-dimensional amplified NLSE.

In the following, we first consider solutions to the �1
+1�-dimensional problem in a unified formulation making
explicit the space-time duality. We then solve the
�2+1�-dimensional amplified NLSE demonstrating the exis-
tence of self-similar beams in bulk amplifying media.

The propagation equation for a pulse propagating in a
fiber amplifier or of a cw paraxial beam in a dielectric planar
waveguide amplifier with a Kerr nonlinearity corresponds to
a �1+1�-dimensional amplified NLSE:
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�z
= − ia

�2�

��2 + ik0n2���2� +
g

2
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where ��z ,�� is the electric field envelope, k0 the wave num-
ber in the vacuum, n2 the nonlinear index coefficient due to
the Kerr nonlinearity, and g is the gain �9�. The variable �
represents either the lateral transverse dimension in the case
of diffraction in a planar waveguide or the local time in the
case of pulse propagation. The terms on the right-hand side
denote the dispersion or diffraction, SPM, and gain, respec-
tively. The parameter a represents −1/ �2n0k0� for the wave-
guide amplifier and �2 /2 for the fiber amplifier, where n0 is
the refractive index of the waveguide in the spatial problem
and �2 is the GVD in the temporal problem. The parabolic
pulse asymptotic solution of Eq. �1� was obtained in �4� via
the introduction of self-similarity variables. In order to
clarify the physical interactions behind self-similar propaga-
tion and to set the stage for our �2+1�-dimensional solution,
we employ here a different method motivated by Ref. �10�.
We separate � into a real amplitude A and a phase
� ,��z ,��=A�z ,��exp�i��z ,��� which transforms Eq. �1� into
the following coupled equations in A and �:

PHYSICAL REVIEW E 72, 016609 �2005�

1539-3755/2005/72�1�/016609�4�/$23.00 ©2005 The American Physical Society016609-1

http://dx.doi.org/10.1103/PhysRevE.72.016609


��

�z
= −

a

A

�2A

��2 + k0n2A2 + a� ��

��
�2

, �2a�

�A2

�z
= 2a

�

��
�A2��

��
� + gA2. �2b�

Three terms on the right-hand side of Eq. �2a� contribute to
the evolution of the phase. To compare the contributions
from the first two terms, we introduce a parameter N�z ,�� as

N2�z,�� = �k0n2A2/� a

A

�2A

��2 �� =
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a
�A3/

�2A

��2 � . �3�

It can be shown that given a Gaussian pulse as input,
N2�0,0� is equal to the ratio between the dispersion length
and nonlinear length. For a Gaussian beam on the other
hand, this quantity is equal to the ratio of the Rayleigh range
to the nonlinear length. Therefore, N�0,0� is the soliton order
number of the corresponding NLSE �9�, and N2 indicates the
relative strength of the nonlinearity to the diffraction or dis-
persion contributing to the phase advance with propagation.

Under the assumption N2�1, the first term on the right-
hand side of Eq. �2a� can be neglected to give

��c

�z
= −
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�k0n2I + a�c

2� , �4a�
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where the intensity function I=A2 and the chirp function
�c=−�� /�� have been introduced.

Equations �4a� and �4b� have the following self-similar
parabolic solution if an2�0:

I = A0
2 exp�2gz/3��1 − �2/�P

2 �z�� ,

for �����P�z�, and I=0 for �����P�z� where �P�z�
=6A0�k0n2a�1/2 exp�gz /3� /g defines the effective pulse or
beam width. A0 is determined by the pulse energy or the
beam power at the propagation origin z=0. Note that the
parabolic solution has a linear chirp, that is, �c
=g� / �6a� , �����P�z�. By substitution of the parabolic solu-
tion into Eq. �3�, the assumption N2�1 can be justified a
posteriori since we have N2�z ,��=36A0

4k0n2a exp�4gz /3��1
−�2 /�P

2 �3 /g2�1 given enough propagation distance. The
chirp parameter defined as C�z ,��=��c /�� is C�z ,��
=g / �6a�. It is surprising that the chirp parameter is indepen-
dent of propagation distance. As is well known, pure SPM
increases the beam or pulse bandwidth while keeping the
beam or pulse width unchanged, thus leading to an increment
of the chirp parameter with propagation. On the other hand,
diffraction or dispersion only extends the beam or pulse
width and keeps the bandwidth constant. Thus the diffraction
or dispersion tends to reduce the chirp parameter. Substitu-
tion of �c=g� / �6a� into Eq. �4a� yields ��k0n2I+a�c

2� /��
=0. This clearly shows that during the propagation, the in-
crement and reduction of the chirp parameter cancel each
other to reach a local dynamic balance. The role of the am-
plification is to elevate the intensity of the beam or pulse and

to ensure that k0n2I dominates the a /A�2A /��2 contribution
to the phase accumulation with propagation. Evidently, it is
the interaction of the dispersion or diffraction, nonlinearity,
and gain that sustains the self-similar parabolic evolution and
keeps the chirp parameter constant. For the case without
gain, a �1+1�-dimensional optical soliton can be achieved
due to the dynamic balance of the nonlinearity and disper-
sion or diffraction governed by NLSE, where the constant is
the shape of the soliton and its width.

The above analysis demonstrates the existence of the
parabolic beam in a planar waveguide amplifier with a nega-
tive nonlinearity. Indeed, the result is not surprising due to its
equivalence to a pulse fiber amplifier, both of which are char-
acterized by a �1+1�-dimensional amplified NLSE. The du-
ality predicts the parabolic beam even before we wrote down
the equation. However, intuition alone cannot tell us whether
such a parabolic beam exists in a bulk medium, where it
would be described by a �2+1�-dimensional amplified
NLSE. For example, stable soliton solutions to the
�2+1�-dimensional NLSE do not exist if the nonlinearity
does not saturate; thus it is not obvious that the existence of
self-similar solutions in 2+1 dimensions can be inferred by
analogy.

We are interested in the solutions for an initial Gaussian
beam ��0,r�= �2Pin / �	w0

2��1/2 exp�−r2 /w0
2� where Pin is the

beam input power, w0 the spot size. The corresponding Ray-
leigh range is given as zR=	w0

2n0 /
0 where 
0 is the wave-
length in the vacuum and n0 the refractive index of the me-
dium. Under the following normalization: z→4zRz , r
→w0r , g→g / �4zR� , �=U	2Pin / �	w0

2�, the dimensionless
form of such an equation in cylindrical coordinates can be
written as �11�

i
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�z
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r

�U

r
+

�2U

�r2 � − ��U�2U + i
g

2
U , �5�

where �
8Pin / Pcr and the critical power for beam collapse
is Pcr=0.159
0

2 / �n0n2�. Following the same approach to the
�1+1�-dimensional amplified NLSE, we can define an N2

parameter for the �2+1�-dimensional equation as N2


���U�2U /�1 � r � � �r �r�U � �r ���. Under the assumption
N2�1, we obtain a parabolic solution to Eq. �5�:

U�z,r� = �g/2�1/2/�2���1/4� exp�gz/4��1

− r2/rp
2�z��1/2 exp�i�z,r�� ,

0 � r � rp�z� , �6�

and U�z ,r�=0 for r�rp�z� where rp�z�
=2 exp�gz /4����1/4 / �g /2�1/2. This corresponds to a beam dif-
fracted in two transverse dimensions with a parabolic inten-
sity profile and a quadratic phase given by

�z,r� = 0 + ���1/2 exp�gz/2�/4 + gr2/16, �7�

where 0 is an arbitrary constant. The local spatial frequency
is given by
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�s = −
��z,r�

�r
= − gr/8.

The spatial frequency spectrum of this parabolic beam is
obtained with the stationary phase method �12�, yielding an-
other parabolic function of �, the radius in the spatial fre-
quency domain:

��z,�� = 2	2���1/4/	g exp�gz/4��1 − �2/�p
2�z��1/2

�exp�i��z,��� ,

0 � � � �p�z� , �8�

and ��z ,��=0 for ���p�z� where �p�z�
= �g /2�1/2���1/4 exp�gz /4� /4 and the spatial frequency spec-
trum also has a quadratic phase as

��z,�� = 0 + 	/2 + ���1/2 exp�gz/2�/4 − 4�2/g . �9�

By analogy to the group delay of a pulse defined as the
derivative of the spectral phase with respect to frequency, an
equivalent spatial group separation is given as

Ds =
���z,��

��
= − 8�/g .

We have confirmed these analytical results by numerical
simulations of Eq. �5� based on the quasi-fast Hankel trans-
form �13�. In the simulation, an initially Gaussian beam is
incident on a bulk medium amplifier with a gain coefficient
of 18 dB/zR and �=−1.5. The negative � indicates the nega-
tive nonlinearity. Figure 1�a� shows the evolution of the
beam intensity profile from the numerical simulation. It
clearly illustrates that the input Gaussian beam stretches with
amplification and gradually evolves into a parabolic beam.

The evolution enters the parabolic regime at a propagation
distance of 1.8-zR. In order to confirm our assumption that
the parabolic beam is achieved when N2�1 is satisfied, N2

and the corresponding beam intensity profile on logarithmic
scale in 0.4-ZR increments are shown in Figs. 1�b� and 1�c�.
We can see that N2 increases and extends dramatically along
the propagation. In the region of N2�1, the beam profile has
a parabolic shape �the relatively flat part of the curve in the
Fig. 1�c�, since the y axis is plotted on a logarithmic scale�.
In the region where N2�1 is not satisfied, our assumption
fails and the beam profile curve shows a fast decreasing wing
with much lower intensity. Both analytical results �solid
curve� and the numerical simulations �open circles� after
2.9-zR of propagation are shown in Fig. 2. It can be seen
from Figs. 2�b� and 2�d� that the initial input Gaussian beam
has asymptotically evolved into a parabolic beam with a
parabolic spatial frequency spectrum. In Figs. 2�a� and 2�c�,
the linear dependence of �s on r and Ds on � indicates the
quadratic phase for both the beam and its spectrum. The
deviations between the analytical results and the simulations
at the low power wings are expected where the N2�1 does
not hold. The excellent agreement between two methods
verifies our asymptotic parabolic beam solutions.

In fact, the existence of a gain is not the only way to
realize the assumption N2�1. From its definition, such a
condition can be achieved if the input pulse/beam has a
strong enough intensity. Reference �10� shows that in the
high intensity limit, the �1+1�-dimensional NLSE also sup-
ports self-similar propagation of a parabolic pulse in a nor-
mally dispersive fiber without gain. Those theoretical predic-
tions were confirmed experimentally by further propagation
of the parabolic pulse, which is obtained from a fiber ampli-
fier, through a piece of passive fiber �1�. We expect that the
same phenomenon happens for the �2+1�-dimensional

FIG. 1. �a� evolution of a
Gaussian input beam into a para-
bolic beam in a bulk amplifier
with negative nonlinearity. �b�, �c�
and intensity on logarithmic scale
in 0.4- increments.

FIG. 2. Comparison between
the numerical simulation and the
asymptotic parabolic beam results.
�a� local spatial frequency, �b�
beam intensity profile, �c� spatial
group separation, and �d� spatial
frequency spectrum
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NLSE; Fig. 3 shows the simulation results. At first, the
strong parabolic beam at a propagation distance of 2.4-zf is
selected from Fig. 1�a�. Taking this parabolic beam as the
input, we run the simulation with the gain turned off, keeping
other parameters unchanged. Without gain, the beam inten-
sity quickly drops with the lateral spread of the beam during
propagation, while the parabolic shape of the beam is main-
tained. Certainly the continuous reduction of the beam inten-
sity will eventually lead to N2 comparable to one and there-
fore the parabolic propagation will cease.

It should be noted that the parabolic beam generation and
propagation rely on a sign match between diffraction and
Kerr nonlinearity. Since diffraction is equivalent to anoma-
lous dispersion, a negative nonlinearity is required. Fortu-
nately, negative nonlinearities have been investigated experi-
mentally for more than a decade, with most studies focused
on spatial dark solitons and optical switching �14–17�. Po-
tential materials or systems include semiconductors �such as
ZnSe� �14�, sodium vapor �15�, electromagnetically induced

transparency �EIT� material �16�, and polymer �17�. An al-
ternative to the real negative nonlinearity is an effective
negative nonlinearity produced by cascaded quadratic pro-
cesses �18�. Properly combined with gain, the generation of a
parabolic beam from such media may be anticipated. Re-
cently, it has been demonstrated that diffraction in a wave-
guide array can be reversed �19�; this opens another possible
approach to generating and propagating a parabolic beam
utilizing the reversed diffraction and a positive nonlinearity.

In conclusion, we have solved the �1+1�-dimensional and
�2+1�-dimensional amplified NLSE’s using a method which
illuminates the physical origin of self-similar propagation.
We have verified by numerical simulations that our
asymptotic solutions predict the formation and propagation
of self-similar parabolic beams. The specific roles of diffrac-
tion, SPM, and gain during the propagation of the parabolic
beam have been identified. It has also been shown that in the
high-intensity limit, a parabolic beam can self-similarly
propagate a certain distance even without a gain. Possible
experimental implementations have been discussed. We note
that the beam propagation solutions found here turn out to be
directly analogous to higher dimensional asymptotic para-
bolic solutions which have been found for the amplified
Gross-Pitaevskii �GP� equation describing the growth of a
Bose-Einstein condensate �20�. As a special class of ampli-
fied GP equation without the potential term, a
�3+1�-dimensional amplified NLSE equation can be used to
describe the propagation of a pulsed beam through a bulk
amplifier with anomalous dispersion and negative Kerr non-
linearity. This implies that a parabolic-pulsed parabolic beam
can be obtained. Parabolic beams may prove to be useful as
well as interesting: for example, a parabolic profile falls
much faster from the peak to the wings compared to a Gauss-
ian or a hyperbolic secant, which could be useful for appli-
cations like laser machining. By analogy to the similariton
for a pulsed oscillator �7�, it might be possible to build high
power lasers with the help of the parabolic chirped beam
amplification technique.
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FIG. 3. Self-similar propagation of a high intensity parabolic
beam without gain.
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